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Abstract. We analyse a variety of solution strategies for nonlinear two-dimensional (2D)
and three-dimensional (3D) electromagnetic (EM) inverse problems. To impose a realistic
parameterization on the problem, the finite-difference equations arising from Maxwell equations
are employed in the forward problem. Krylov subspace methods are then used to solve the resulting
linear systems. Because of the efficiencies of the Krylov methods, they are used as the computational
kernel for solving 2D and 3D inverse problems, where multiple solutions of the forward problem
are required. We derive relations for computing the full Hessian matrix and functional gradient that
are needed for computing the model update, via the Newton iteration. Different strategies are then
discussed for economically carrying out the Newton iteration for 2D and 3D problems, including
the incorporation of constraints necessary to stabilize the inversion process. Two case histories
utilizing EM inversion are presented. These include inversion of cross-well data for monitoring
electrical conductivity changes arising from an enhanced oil recovery project and the usefulness of
cross-well EM methods to characterize the transport pathways for contaminants in the subsurface.

1. Introduction

Within the last decade significant progress has been made in solving 2D and 3D electromagnetic
(EM) inverse problems for geophysical applications. Knowledge of the subsurface electrical
conductivity, estimated through the inversion process, is critical. It can be utilized in
hydrological modelling, mineral, oil and gas exploration, and more recently in reservoir and
environmental characterization. Because of large computational demands, solutions have been
proposed that utilize approximate forward-modelling methods and data sensitivities (Zhdanov
and Fang 1999, Farquharson and Oldenburg 1996, Torres-Verdin and Habashy 1994). Many
of these approximate methods rely on the Born approximation or some modified form of it.
While these approaches have had some success, they limit themselves to situations where
the EM response can be accurately simulated over a limited range of conductivity variation,
frequencies and model complexity. For example, it is now understood that these solutions may
not be that good for situations where there is a large mutual interaction/coupling in the fields
arising from multiple conductors. Because of these limitations it was realized that solutions
that simulate the full physics of EM wave propagation and scattering were also required. These
latter types of solutions sacrificed speed for accuracy; however, they offer a means to validate
the range of applicability of the faster approximate solutions, and provide accurate solutions
over the widest range of possible scenarios.

For 2D problems, Newman (1995) demonstrated that approximate solutions to the forward
problem could be avoided and it was possible to impose a realistic parametrization on the
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problem, thereby producing images of the subsurface that are not underparametrized and
undersampled. A full solution to the forward problem was not prohibitive as previously
believed, and it could be used as the computational kernel for solving the 2D inverse problem.
For 3D problems, Newman and Alumbaugh (1997) avoided direct solution of the normal
equations by using conjugate gradients (CGs) to compute the model update; this was the same
approach used by Mackie and Madden (1993) for the 3D magnetotelluric inverse problem. With
this method all that is required is the ability to efficiently compute a matrix–vector product
arising from the normal equations. The 3D problem was also solved on a massively parallel
computational platform because of its size and scale; solution times on scalar machines were
not practical due to excessive computation times and memory requirements. In the solution of
either the 2D or 3D inverse problem, the 3D Maxwell equations were precisely solved using
staggered finite differences and highly efficient Krylov subspace methods. It is now recognized
that incorporation of these strategies into the inversion algorithms was essential in producing
robust and accurate solutions to 2D and 3D EM inverse problems. Because of the inherent
accuracy of these types of solutions they could also be used for validating the approximate
inversion schemes.

In this paper we revisit and expand upon the computational strategies of Newman (1995)
and Newman and Alumbaugh (1997) for solving 2D and 3D EM inverse problems. The
formulation that we present reflects a more general and mature treatment of these problems.
Using a partial differential equation framework of Maxwell equations, we derive relations for
computing the full Hessian matrix and functional gradient that are needed for computing the
model update, via the Newton iteration. We also provide different strategies for economically
carrying out the Newton iteration for 2D and 3D problems, including the incorporation of
constraints necessary to stabilize the inversion process. Essential to these strategies is the ability
to efficiently solve the forward problem. Thus we will review the formulation of the forward
problem and methods for its solution along with related computational issues. We conclude the
paper with two case histories. In the first example, we demonstrate the usefulness of cross-well
EM methods to characterize the transport pathways of contaminants in the subsurface. In the
second example, cross-well data are inverted for monitoring conductivity changes arising from
an enhanced oil recovery project.

2. Formulation of the forward problem

An important consideration in solving the 3D/2D EM inverse problem is that the forward-
modelling solution must be able to correctly simulate the responses arising from realistic 3D
and 2D geology. Parametrizations of the earth’s electrical conductivity on the order of 105 to
106 are typically required for these types of numerical simulations. Finite-difference modelling
techniques, as already mentioned, are very efficient for the task and are employed here. We
remark that we also use the 3D solution presented below to simulate responses arising from 2D
problems, where the conductivity is invariant along a geological strike. While it is possible to
solve such 2D problems quickly by Fourier transforming out the strike direction of the problem
(Stoyer and Greenfield 1976), the 3D solution presented below is fast enough so we can also
simulate 2D responses with high efficiency.

Assuming a harmonic time dependence of eiωt where i = √−1 and ω is the angular
frequency, and neglecting displacement currents, the electric field, E, satisfies the vector
equation

∇ × ∇ × E + iωµ0σE = J . (1)

In this expression the electrical conductivity and magnetic permeability of free space are
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denoted by σ and µ0 respectively; note that σ can be considered to be a complex quantity that
varies pointwise in three dimensions. Thus, induced polarization effects can be studied with
equation (1). While EM methods can also be sensitive to magnetic permeability changes in
the earth, usually such changes are rare in occurrence, except for magnetic ore bodies and a
small number of soils that exhibit high magnetic losses. Hence, the assumption that the earth
is nonmagnetic in equation (1) is quite reasonable. Dirichlet boundary conditions are applied
to equation (1), where the tangential electric-field boundary values are specified to be zero on
the boundary of a large box, which fully contains the investigation domain, including the air
and earth, as well as sources and receivers. Specification of the source vector J will depend
on whether a total or scattered electric field solution is desired. A scattered-field formulation
is usually preferred because the mesh need not be as fine as with a total field solution, and
can deliver accuracy to within one per cent, which is typically needed for inverting field data.
In a scattered field formulation, we set E = Es in equation (1), and following Newman and
Alumbaugh (1995) set

J = iωµ0{(σ − σ0)}Eb, (2)

where σ0 defines the background conductivity of uniform media and Eb is the background
electric field.

When equation (1) is approximated with finite differences using a Yee (1966) staggered
grid and symmetrically scaled (Alumbaugh et al 1996, Newman and Alumbaugh 1995), a
linear system results:

KE = S. (3)

The matrix K is complex-symmetric, depends upon frequency and is sparse with 13 nonzero
entries per row. S is the source vector that depends on the boundary conditions, source-field
polarization and frequency of excitation. This system is efficiently solved for each source and
frequency using the quasi-minimum residual (QMR) method, which belongs to the class of
Krylov subspace techniques that are highly efficient in iteratively solving sparse linear systems.
The reader is referred to Alumbaugh et al (1996) and Newman and Alumbaugh (1995) for the
details of how these techniques are implemented. Once the electric fields have been determined
on the mesh, the magnetic fields, H , can be determined from Faraday’s law,

H = ∇ × E/ − iωµ0, (4)

by numerically approximating the curl of the electric field at various nodal points. One can
then interpolate either the electric or magnetic field nodal values to the point of interest.

Even with the benefits of a staggered grid, which implicitly enforces the divergence-free
condition on the current density (Smith 1996a), it is sometimes necessary to explicitly enforce
this condition, where

∇ · σE = 0. (5)

This can be accomplished in several ways in the numerical solution as frequencies approach
the static limit, either through preconditioning (Newman 1999) or with a static-divergence
correction procedure (Smith 1996b, Newman and Alumbaugh 1996). Such methods can
drastically reduce the time needed to solve equation (3). For cross-well simulations, however,
these techniques are not that effective, due in part to higher frequencies employed in the
measurements. For more information on the effectiveness and applicability of these solution
acceleration techniques, we refer the reader to the above-mentioned references.
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3. Formulation of the nonlinear inverse problem

3.1. Regularized least squares

We assume that through a linear complex forward mapping operator, f [m], we have the ability
to compute discrete solutions of Maxwell equations for a real and arbitrary 3D electrical
conductivity distribution, m, within the earth for some source–receiver set combination as
shown in figure 1. In many inverse problems the assumption that the conductivity is strictly
real is quite reasonable and it avoids additional complications. Techniques for constructing
this operator, f [m], are given below. Thus the observations can be viewed as a function of
the model:

dobs = f [m] + ε (6)

where dobs and ε are complex vectors of length n that comprise the observed data values and
measurement noise. The mapping f [m] takes the real m-dimensional vector, m and maps it
into the complex data space of dimension n. Since the data are noisy and the inverse problem
is underdetermined (there are far more model parameters than data points) the process of
recovering the model, m, is unstable and ill-posed; this is the case even in the absence of
noise. Thus there is no unique conductivity model that satisfies the data. Hence the process
of regularization is used to recover a relatively smooth solution which is unique at least in
a localized region of the model space. A technique often used to accomplish this task is to
minimize the Tikhonov functional (Tikhonov and Arsenin 1977)

φ = 1

2
{(F [m] − dobs)}H {(F [m] − dobs)} +

λ

2
‖W (m − mref)‖2 (7)

where H denotes the Hermitian operator. W is a real smoothing matrix, which does not depend
on m. There is a variety of choices available for W . Here W is based upon a finite-difference
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Figure 1. Transmitter antennas and receivers are deployed on the earth’s surface as well as in
boreholes to map subsurface variations in the electrical conductivity. The transmitters can consist
of either electric/magnetic dipoles or loop sources operating at different frequencies of excitation.
Other source configurations are possible. The receivers are typically electric/magnetic dipoles that
measure the electric/magnetic fields arising from the transmitters, yet altered by the subsurface
conductivity. The inverse problem is to recover estimates of the subsurface conductivity from these
source–receiver sets.
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approximation to the Laplacian (∇2) operator applied in Cartesian coordinates in order to
minimize model curvature in either two or three spatial dimensions. When equation (7) is
formed, we implicitly assume that the observed and predicted data have been weighted such
that noisy data points are given far less influence in determining the model, which minimizes
φ. This can be accomplished with an n × n weighting matrix D, where the quantities F [m]
and dobs in equation (7) are given by

F [m] = Df [m]
dobs = Ddobs.

(8)

A typical choice for D would be to form weights based on the inverse of standard deviations
of the measurements. In this instance D would be strictly diagonal. Other quantities specified
in equation (7) include the reference model, mref , and the regularization parameter λ, where
λ � 0. The regularization parameter trades off the data fit against model smoothness. Its
selection requires special care if the model, m, estimated from the inversion process is to
be physically reasonable. Selecting a regularization parameter that is too small will produce
models that are spatially too rough, but provide superior data fits. On the other hand, selecting
it too large will yield highly smoothed models that exhibit poor dependence on the data.
Unfortunately, there is no unique approach in its selection. We will discuss our selection
procedure for λ shortly.

Computing the gradient ∇φ with respect to the model parameters and setting the resulting
expression to zero yields the necessary conditions for a minimum in equation (7). With some
algebra the kth component of the gradient can be expressed by the following expression:

∂φ/∂mk = Re {∂F [m]T /∂mk{F [m] − dobs}∗} + λwT
k W (m − mref), (9)

where wk denotes the kth column of W and T denotes the transpose operator and Re refers
to the real part of the complex argument. The necessary condition ∇φ = 0 at the functional
minimum can then be expressed as

Re {JT (m)(F [m] − dobs)∗} + λW T W (m − mref) = 0 (10)

where J(m) = ∂F [m]/∂m is the complex sensitivity matrix, and ∗ stands for complex
conjugation. The common approach to minimize equation (7) is to use Newton’s method to
solve the nonlinear set of equations given in equation (10). One can show that the method
converges quadratically in the neighbourhood of the functional minimum. Each Newton step
amounts to using a quadratic expansion about the current model, m, in order to determine a
model step that will reduce the gradient ∇φ towards zero. When the functional in equation (7)
is of quadratic form, Newton’s method will solve equation (10) in one step.

3.2. The Newton iteration

Often it is preferable to apply the Newton iteration directly to the parameter, instead of its
perturbed state, to avoid creeping convergence in the Newton iteration (Scales et al 1990).
This strategy also ensures a smooth sequence of model updates, which is our goal, instead of a
sequence of smoothed model perturbations. In addition, it allows for imposition of constraints
directly on the model parameters thereby avoiding nonphysical solutions, such as negative
conductivity parameters. When the model parameters are determined from a sequence of
model perturbations it is possible that the final model is nonphysical, since it is permissible for
the model perturbations to be negative. Thus at the ith Newton iterate we seek to determine
a model m(i), for which φ the norm of ∇φ can be reduced. To accomplish this we need the
gradient, g = ∇φ, and the m × m Hessian matrix, H , which requires both first and second
derivatives of F [m] with respect to m in order to solve the system

Hm(i) = −g + Hm(i−1). (11)
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Newton’s method will converge quadratically if the current iterate is sufficiently close to the
critical point in equation (10). When it is not, it may be necessary to carry out a weak line
search, with backtracking, by adjusting m(i) according to

m(i) = µm(i) + (1 − µ)m(i−1), (12)

where 0 < µ < 1 is a parameter chosen to ensure that the norm of the updated gradient has
decreased sufficiently (Dennis and Schnabel 1996).

To proceed with the Newton iteration we supply some additional details that link the
forward-mapping operator to the inversion methodology discussed thus far; that is, we need
to express the g and H in terms of the forward problem. Let us first consider the gradient.

The predicted data, F [m], arise from a linear combination of the electric field E, that has
been determined on the discretization grid of size N for a given source specified in the forward
problem, with a linear interpolation operator, Q. Depending on whether electric or magnetic
field types are of interest, the operator Q acts upon E and two results are possible: the result
is (1) to interpolate the electric field from the grid to receiver locations or (2) to compute the
discrete curl of the electric field on the grid and interpolate the result to the receiver locations;
hence predicted magnetic field measurements are possible within this framework. In either
instance, the predicted field that results is then weighted according to equation (8). Thus we
write

F [m] = QE, (13)

where Q is independent of m, includes the effect of the data weighting matrix D, and exhibits
dimensions n × N with n � N . Thus the data sensitivity to the kth model parameter can be
expressed as

∂F [m]/∂mk = Q∂E/∂mk, (14)

where, following Newman and Alumbaugh (1997), ∂E/∂mk is expressed as

∂E/∂mk = K−1(∂S/∂mk − ∂K/∂mkE). (15)

When the forward problem in equation (3) is expressed in terms of the scattered fields, the
source vector S will depend linearly on the model parameters and is therefore included in
equation (15). With a total field solution, however, ∂S/∂mk would be zero. Thus the kth
column of the data sensitivity/Jacobian matrix, J , is written as

Jk = QK−1(∂S/∂mk − ∂K/∂mkE). (16)

Let us define an N × m matrix G, where

G = {(∂S/∂m1 − ∂K/∂m1E), (∂S/∂m2 − ∂K/∂m2E), . . . (∂S/∂mm − ∂K/∂mmE)}.
(17)

Hence we can express J with matrix products involving Q, K−1 and G:

J = QK−1G. (18)

Using equations (10), (13) and (18) we can then express the gradient as

g = Re {GT K−1QT {QE − dobs}∗} + λW T W (m − mref), (19)

where we have employed the fact that

K−T = K−1 (20)

since K is complex-symmetric.
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We derive the Hessian by differentiating equation (9) with respect to the j th model
parameter. That is

∂2φ/∂mj∂mk = Re {∂F H [m]/∂mj∂F [m]/∂mk

+{F [m] − dobs}H∂2F [m]/∂mj∂mk} + λwT
k wj . (21)

Here the (j, k) entry of the Hessian is given by Hjk = ∂2φ/∂mj∂mk . In this expression, the
forward-mapping operator, F [m], and the data sensitivities, ∂F H [m]/∂mj and ∂F [m]/∂mk ,
can be readily evaluated from equations (13)–(15). We now express ∂2F [m]/∂mj∂mk in
terms of the forward problem. First we differentiate equation (14) with respect to the j th
model parameter, which yields

∂2F [m]/∂mj∂mk = Q∂2E/∂mj∂mk. (22)

Equation (3) is then differentiated with respect to the j th and kth model parameters, where

∂2E/∂mj∂mk = K−1{∂2S/∂mj∂mk − ∂2K/∂mj∂mkE

−∂K/∂mk∂E/∂mj − ∂K/∂mj∂E/∂mk}. (23)

Newman and Alumbaugh (1997) demonstrate that the matrix ∂K/∂mj and vector ∂S/∂mj

are also highly sparse with a maximum of twelve nonzero entries. Moreover, K is linear in the
model parameters, thus ∂K/∂mj does not depend on the model parameters for all j , it only
depends on the spatial grid intervals employed in finite-difference mesh. Similar reasoning can
be applied to S when a scattered field solution is employed in the forward problem; otherwise,
S, as specified in a total field solution, is independent of the model parameters. In all cases,
however, ∂2S/∂mj∂mk and ∂2K/∂mj∂mk are zero and are dropped from equation (23).
Finally, equation (22) can be expressed with the aid of equations (15) and (23) as

∂2F [m]/∂mj∂mk = −QK−1{∂K/∂mkK
−1(∂S/∂mj − ∂K/∂mjE)

+∂K/∂mjK
−1(∂S/∂mk − ∂K/∂mkE)}. (24)

Next, incorporating equations (13)–(15), (20) and (24) along with the identity

Re {∂F H [m]/∂mj∂F [m]/∂mk} = Re {∂F T [m]/∂mj (∂F [m]/∂mk)
∗} (25)

into equation (21), we finally obtain the (j, k) entry of the Hessian,

Hjk = Re {(∂S/∂mj − ∂K/∂mjE)T K−1QT {QK−1(∂S/∂mk − ∂K/∂mkE)}∗
−{QE − dobs}H QK−1{∂K/∂mkK

−1(∂S/∂mj − ∂K/∂mjE)

+∂K/∂mjK
−1(∂S/∂mk − ∂K/∂mkE)}} + λwT

k wj . (26)

A check is available on equation (26) with the aid of equation (16), whereby we can replace
the leading term in equation (26) with

JT
j J∗

k = (∂S/∂mj − ∂K/∂mjE)T K−1QT {QK−1(∂S/∂mk − ∂K/∂mkE)}∗. (27)

Thus, it is straightforward to show that equation (26) displays the required symmetry condition

Hjk = Hkj , (28)

since

Re {JT
j J∗

k } = Re {JT
k J∗

j }. (29)

Let us now define a vector vT with N column entries, where

vT = −(QE − dobs)H QK−1 (30)

along with the m × N matrix V such that

V = {vT ∂K/∂m1, vT ∂K/∂m2, . . . , vT ∂K/∂mm}T . (31)
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Using equations (16)–(18) and (31) we may then express equation (26) in matrix form,

H = Re {JT J∗ + V K−1G + GT K−1V T } + λW T W (32)

where

JT J∗ = GT K−1QT {QK−1G}∗. (33)

It is straightforward to generalize these expressions for g and H for multiple source fields.
The gradient and the Hessian are simply the sum of the gradients and Hessians arising from
each source as applied in equation (3).

3.3. Selecting the regularization parameter

Many strategies have been advanced for selecting the regularization parameter, but there
appears to be no unique approach. Here we refer the reader to the following works on the
subject: Constable et al (1987), deGroot-Hedlin and Constable (1990), Asher et al (1995),
Newman (1995), Newman and Alumbaugh (1997) and Smith et al (1999). In our experience, a
continuation or ‘cooling’ approach has worked well for the problem. The basic idea is to start
with a relatively large value of λ, where we solve an almost quadratic problem in equation (7).
We then reduce λ and move to a problem where the data fitting requirement weighs more
in equation (7). A new minimization problem is then solved. This process of reducing λ

continues until an acceptable data misfit, given by

{(F [m] − dobs)}H {(F [m] − dobs)} < T ol (34)

is achieved. Experience shows that this procedure stabilizes the inversion process at the outset
by guarding against arbitrarily rough models that are nonphysical. Following Newman and
Alumbaugh (1997) we select λ as follows: at each inversion iteration we first estimate the
largest eigenvalue of the nonregularized part of the Hessian matrix in equation (32). This can
be done by computing the value, rsum, which is the largest row sum of the matrix

Re {JT J∗ + V K−1G + GT K−1V T }. (35)

The regularization parameter, λ, is then determined at each inversion iteration by

λ = rsum/2(i−1). (36)

Here the index i refers to the current inversion iteration. At the early stages of the inversion
process, selecting λ using equation (36) produces model updates that are influenced by the
larger eigenvalue–eigenvector pairs associated with the nonregularized part of the Hessian
matrix along with the smoothing constraint imposed upon the problem. Thus parts of the
model structure that are well determined by the data are first admitted into the inverse solution.
As the iteration procedure continues, λ is reduced and more structure is admitted into the
model. It is possible during this procedure to reduce λ too much during the terminal stages of
the inversion iteration and this will cause φ to increase in equation (7). At this point we fix λ

at the previous inversion iteration value for which φ decreased and continue the iteration. Our
stopping criteria are as follows: (1) convergence of the iteration, (2) the data are fit to within
the noise level in the measurements, or (3) some preset iteration limit has been attained.

4. Strategies for 3D problems

4.1. Imposition of constraints

Because 3D inverse problems are underdetermined and use data sets that are undersampled
and noisy, they are inherently ill-posed. While regularization and inverting against a reference
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model can ameliorate the instability of the problem, imposition of additional constraints can
be of great value. Independent information is often available about a site and should be
employed in constructing a solution to the inverse problem. A solution that incorporates this
information should further reduce its ambiguity. In this section we consider imposition of
inequality constraints that place bounds on the model parameters as well as the incorporation
of prior information on known geological structures within the regularization matrix, W .

An important constraint on the electrical conductivity is that it must be positive. It is
therefore advisable to formulate our inverse solutions in which negative model parameters are
excluded. We have had success in imposing this type of constraint for 3D problems through
a log parametrization, which can also be used to impose lower bounding constraints on the
parameters. Let us define a new parameter uk that is related to the kth model parameter mk as
follows:

uk = ln(mk − lbk), (37)

where lbk is a lower bounding constraint on the kth model parameter, mk such that mk > lbk .
We also can express mk in terms of uk , via the expression

mk = euk + lbk. (38)

Hence

∂mk/∂uk = mk − lbk. (39)

To reformulate the inverse problem for log parameters, defined by equation (37), we employ
the chain rule and use equation (39) to modify the matrices G and V as follows:

G = {(m1 − lb1)(∂S/∂m1 − ∂K/∂m1E), . . . , (mm − lbm)(∂S/∂mm − ∂K/∂mmE)} (40)

and

V = {(m1 − lb1)v
T ∂K/∂m1, (m2 − lb2)v

T ∂K/∂m2, . . . , (mm − lbm)vT ∂K/∂mm}T .

(41)

Thus the model update, defined by equation (11), is now determined from

Hlnu
(i) = −gln + Hlnu

(i−1) (42)

where gln and Hln are based on equations (19) and (32) that incorporate the changes in
equations (40) and (41) with the current and reference model in equation (19) replaced by
their log counterparts. Once u(i) has been determined, m(i) is determined using equation (38).
While hyperbolic transformations are available to enforce both upper and lower bounding
constraints on the 3D problem, we advise that they be avoided because, in our experience,
they greatly increase the nonlinearity and instability of the problem. Recent advances
in optimization theory suggest that limited memory quasi-Newton methods with bound
constraints appear to be a promising approach for 3D problems. We refer the reader to the
works of Lin and Moore (1999) for more information.

By altering W , we can preserve known structural boundaries within the inversion domain,
and still impose smoothness constraints elsewhere where we have no direct information. An
example of such an instance would be the top surfaces of sub-salt bodies determined from
seismic experiments (Hoversten et al 1998). To improve the resolution of these features, for
EM inversion investigations, it is desirable to incorporate tears in the regularization matrix W

at the known surfaces when we expect rapid changes in the electrical conductivity. Imposition
of a tear into W eliminates the smoothness constraint across that surface, but it still preserves
the symmetry in W . For a given conductivity parameter/cell within the inversion domain,
a row of the matrix W is constructed for the 3D problem with a 7-point Laplacian stencil.
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This stencil couples the conductivity of the cell to its nearest neighbours along the Cartesian
coordinate axis, thereby providing the smoothness constraint. However, when a surface is
imposed between this cell and any of its neighbours, no coupling is allowed between those
cells. Thus, the 7-point stencil is reduced accordingly.

4.2. Computational considerations

For 3D problems, forming the Hessian and directly solving the model update via equation (11)
is computationally prohibitive. On the other hand, matrix–vector products involving the
Hessian are not that expensive. Hence Newton–Krylov methods offer a reasonable approach
to iteratively solving equation (11) to some predetermined error level. The CG method is
the best known of the Newton–Krylov methods and can be applied directly to equation (11)
since the Hessian is symmetric positive definite (Mackie and Madden 1993, Newman and
Alumbaugh 1997, Haber et al 1999a). To use this strategy we observe that matrix–vector
products involving the regularization matrix, W , are easy to compute and require minimal
storage because W is highly sparse, requiring only seven nonzero entries per row to be stored.
Inspection of equation (32) then shows that three forward solutions of equation (3) per source
at a fixed frequency are all that are needed to complete one iteration of a CG algorithm. A
similar result is demonstrated in Haber et al (1999a) when a Newton–Krylov/CG method is
employed for computing the full Newton step. Thus for some real vector x, we would be
required to solve the following problems:

Ky = Gx (43)

Kz = QT {Qy}∗, (44)

and

Ku = V T x. (45)

To initialize the CG algorithm, five additional forward solutions per source and frequency are
required for specifying the right-hand side of equation (11), −g + Hm(i−1). The first is to
determine the electric field, E, with equation (3) and the second is

Kr = QT {QE − dobs}∗, (46)

which is used for computing the gradient in equation (19). The third, fourth and fifth arise
from the matrix–vector product Hm(i−1) and are given by equations (43)–(45), where x has
been replaced by m(i−1).

Let us define nrel as the number of CG relaxation steps needed to produce an acceptable
model update and Ntx as the number of sources applied in the problem at a fixed frequency.
Thus the total number of forward modelling solutions per frequency needed for the model
update is given by the expression, 5Ntx + 3nrelNtx . A common approach taken to reduce
the computational burden is to invoke a Gauss–Newton approximation by neglecting terms
involving the matrix V in equation (32). Thus solution of equation (45) is no longer necessary.
Justification for this assumption is based on the observation that as we approach the functional
minimum in equation (7), V will vanish because, in equation (30), vT → 0, since QE → dobs.
In this case the number of forward modelling applications required for the model update reduces
to 4Ntx + 2nrelNtx per frequency.

Usually tens of matrix–vector products are required for computing the model update in
equation (11) with conjugate gradients. Thus the number of forward-modelling applications
can become excessive if a large number of CG relaxation steps are needed; each relaxation
step requires two or three forward-modelling applications per source at each distinct frequency.
Fortunately, we can avoid this difficulty when the number of receivers is modest in number.
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Newman and Alumbaugh (1999) showed that, in this instance, it is better to compute all
necessary forward solutions first before applying the CG algorithm to compute the model
update. Assuming a Gauss–Newton approximation, where

H ≈ Re {JT J∗} + λW T W , (47)

it is necessary to precompute the electric field, E, for each source along with the adjoint electric
fields, aE, arising from each and every receiver location assigned to that source on the finite-
difference mesh; we consider a source to be distinct in both position and frequency. For our
purposes, sources occupying the same physical location but operating at different frequencies
are considered distinct. If we define an n × N matrix UT , where

UT = {aE1,
aE2, . . . ,

aEn}T , (48)

the adjoint electric fields can be obtained by solving the block system

QK−1 = UT . (49)

Since there are n rows of Q, solving the block system involves n additional forward solves for
each source. Additional computational savings can be realized within this framework when
there are identical sets of receivers for different sources, operating at a common frequency.
This is a prevalent configuration utilized for cross-well measurements. Let us assume we
have l unique receiver positions corresponding to these sources. A unique receiver position
consists of a specific field component made at a site. Thus the total number of forward
solutions needed for the model update is Ntx + Nrx , where Ntx and Nrx are the total number of
sources and unique receivers applied in the inverse problem at a given frequency. Hence for
multiple-frequency data sets the number of forward solutions scales directly with the number
of operating frequencies. It was this type of implementation for determining the model update
that Alumbaugh and Newman (1997) utilized to successfully invert a 3D cross-well field data
set.

5. Strategies for 2D problems

5.1. Imposition of constraints

For 2D problems, we can explicitly form H , thus upper and lower bounding constraints can
be readily imposed upon the Newton iteration in equation (11) using quadratic programming
(Fletcher and Jackson 1974). Thus, the Newton iteration is defined by

Hm(i) = −g + Hm(i−1). (50)

subject to

lb � m(i) � ub (51)

where lb and ub are the upper and lower bounding constraints. It is assumed that these
constraints are fixed and do not change with the model update. We have found that the inequality
constraints are more robust than logarithmic constraints. They restrict the conductivity to
lie within a range provided by prior information, such as well logs, and greatly reduce
solution ambiguity. However, when using inequality constraints, one must be careful not
to overconstrain the problem (Eaton 1987), since the solution can pass through unfeasible
regions of parameter space as it converges upon a feasible solution.

Incorporation of prior information on known geological structural boundaries within the
regularization matrix is easy to implement and follows similarly from the 3D problem discussed
above.
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5.2. Computational considerations

As already mentioned above, in 2D problems we can directly form H since the number of
model parameters are far fewer for 2D problems than for 3D problems, at least by an order of
magnitude. Employing a Gauss–Newton approximation, given by equation (47), we construct
H by precomputing the electric field, E, for each source along with a set of adjoint electric
fields, aE, arising from the receivers acting as sources at each and every frequency. To reduce
the computational burden, we note that identical receiver sets are often applied to different
source locations for 2D problems. Hence we only need to compute these adjoint fields once
for each frequency.

6. Other computational strategies

We have reviewed computational strategies for 3D and 2D EM inverse problems. The approach
we have adopted in the formulation of these problems is to set up the solutions within a
constrained framework, where the forward problems required for each Newton step are solved
to within some predetermined accuracy. Thus the predicted data determined from the model
update satisfies the forward-modelling equations to within an acceptable accuracy level. In
an alternative approach, we can formulate the Newton iteration, using the all-in-one approach
(Heinkenschloss 1996). In this approach, we relax the constraint that we precisely solve
the forward problem until convergence of the Newton iteration. Here the control variable
(the electric field in our case) is also cast as an optimization unknown, along with the model
parameters and a set of Lagrange multipliers, which ensure that the electric field will satisfy the
forward problem upon convergence of the Newton iteration. This approach has appeal when
the forward problem is difficult to solve and multiple solutions of it are needed to arrive at an
inverse solution, as in our case. We point out, however, that because we are employing iterative
Krylov methods in the forward problem as well as in the 3D inverse problem, it is not necessary
to precisely solve these problems at the early stages of the iteration procedure. As an example,
Newman and Alumbaugh (1997) showed that early in the Newton iteration, the number of CG
relaxation steps only need be a small fraction compared with those at the latter iterations for
an acceptable model update. Moreover, in the terminal stages of the iteration procedure one
finds convergence in the CG solver to a predetermined error level to occur rapidly, requiring
only a few CG relaxation steps. Finally, we foresee the implementation of a multiple right
side QMR algorithm (Freund and Malhotra 1995) to realize additional efficiencies in solving
the forward problem for multiple sources operating at a common frequency. Nevertheless,
the all-in-one approach looks promising for the types of inverse problems discussed in this
paper, where it may be possible to solve the inverse problem without calculating solutions to
the forward problem even once (Haber et al 1999b). A danger with this approach, however, is
that by fully relaxing the forward-modelling constraint the Newton iteration may diverge.

7. Field examples

Cross-well EM measurements are useful for monitoring the conductivity changes in reservoirs
over time and the associated changes in subsurface saturation arising from the injection of
steam, water or CO2 to mobilize oil reserves for increased production. The review of Wilt et al
(1999) describes the instrumentation and field procedures for making cross-well measurements.
In the processing of cross-well data, the inversion process is essential in producing a map of
conductivity changes within the inter-well region. The conductivity/saturation changes provide
important information on how to efficiently produce the field and extract more reserves.
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Figure 2. Observed real and quadrature vertical magnetic field (left-hand side) in amps m−1

measured in well 1254. The right-hand side shows the calculated vertical magnetic field from the
inverse model shown in figure 3. The operating frequency is 9600 Hz.

Cross-well EM is also being employed to map near-surface geology for environmental site
characterization. We consider two examples of these applications, in 2D, below.

7.1. Environmental site characterization

One emerging application of cross-well EMs is in subsurface characterization of chemically
contaminated sites. A primary concern is mapping sand channels that are conduits for fluid
movement, thus providing pathways for moving contaminates away from their point of origin.
In the vadose zone, sands are generally more resistive than clay-rich shales. Below the water
table the relative conductivity of sand and shale depends on the fluid type within the sand. In
relatively freshwater environments, sand is usually more resistive than surrounding shale. The
electrical contrast between channel sands and their surroundings provides a means of mapping
using electrical techniques.

As part of a site characterization study performed at Lawrence Livermore National
Laboratory, cross-well EM measurements were made between a number of shallow boreholes.
This site has had volatile chemical wastes (VOCs) dumped at spots during the period of the
1940s, when it was a Naval Air Force base, before the Department of Energy took it over as a
National Laboratory. Due to concerns of natural aquifer water transporting these VOCs in the
shallow subsurface, the Department of Energy (DOE) undertook the task of site remediation.
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Figure 3. 2D conductivity section between wells 1254 (0 offset) and 1250 (30 m offset). Velocity
section derived from vertical seismic profiles overlaid as contours. The water table is at 24 m where
there is a sharp velocity and conductivity gradient. The top of the sand channel is marked by the
low-velocity zone at 37 m.

This consisted of mapping and quantifying where these contaminants were being transported
by the natural aquifer flow in this region. Many exploratory boreholes were drilled down to
depths of about 65 m.

Part of the characterization process was to try and map the extent of sand aquifers between
boreholes. Geologic mapping and contouring of observations made in adjacent boreholes
indicated that a sand aquifer observed in well W-1254 between 36 and 42 m depth did not extend
to the W-1250 well. Cross-well EM measurements were made in wells W-1250 (transmitters)
and W-1254 (receivers) to see whether the lateral extent of the aquifer could be determined.

A 9.6 kHz vertical magnetic dipole transmitter was deployed down well W-1250 and
a vertical component magnetic receiver was deployed in W-1254. Multiple recordings of
different source and receiver depth levels were made, by continuously moving the transmitter
coil, for fixed positions of the receiver coil every 2.3 m. This sampling interval was chosen
so as to place the receiver between metallic collar rings around the well casings. The collars
caused coupling and detuning effects when the receiver coils were placed near them. High-
voltage cables and communication lines (which saturated the receiver coils) in the weathered
layer close to the boreholes also made it impossible to deploy the receiver coil shallower
than a depth of 17 m to 27 m, depending on the proximity of the cables. In this example,
we note that the field is attenuated by nearly two skin depths between the wells, assuming a
background media of 0.1 S m−1, typical of the site. This should allow for sufficient sensitivity
to conductivity variations between the wells (Alumbaugh and Morrison 1995).

The boreholes, in the vicinity of the sand aquifer zones, had metallic screens that extended
for 3 m with 1.5 m metal risers above and below the screened interval. No transmitter or
receivers locations were situated within these conductive sections of the boreholes. This
reduced, though it did not eliminate, the ability to image the resistive freshwater aquifer layer
intersecting the boreholes at the screened intervals. The left-hand panels of figure 2 show the



Solution strategies for 2D and 3D EM inverse problems 1371

Figure 4. Map of well locations for cross-well EM time lapse study at Lost Hills. The cross-
well EM experiment was done between two fibreglass-cased observation wells OB 1-9 and OB
2-10. The first cross-well EM survey was conducted in April 1997 just prior to the start of water
injection. A second survey was run 17 months later in September 1998. During this time early
water production occurred in the P2 producer.

real (in-phase) and quadrature (out-of-phase) vertical magnetic field data collected in the 1254
well. The calculated data from the inverse model shown in figure 3 are shown in the right-hand
panels of figure 2. The observed data were assigned an observation error of 5%.

The inversion of the observed data used a starting model built by linearly interpolating
the conductivity from well logs at wells 1250 and 1254. Because there was no apparent dip
on the layering between these wells the interpolation was horizontal. The starting model was
used as a reference model and perturbations about this model were determined. The weights
placed on each data point were set to 5% of the maximum vertical magnetic field amplitude
observed in the measured data. The calculated data shown in the right-hand side of figure 2 fit
the observed data (left-hand side of figure 2) to a root mean squared (RMS) error value of 1.2.

There are two major features in the inverse model shown in figure 3. First, the water table
is clearly shown as the gradation, across the entire section, in conductivity around a depth
of 24 m from lower values to higher values. Secondly, the low-conductivity sand channel
observed in well 1254 at a depth between 36 and 42 m does not extend to well 1250, but
truncates approximately 20 m from the 1254 well. The inter-well resolution is not sufficient to
determine whether or not the channel truncates abruptly or gradually grades from sand to shale.
It is also significant that the conductivity section derived from the cross-well EM measurements
coincides closely with a velocity section derived from a vertical seismic profiles (VSPs) shot
in the 1254 well. We have overlaid the contours of velocity on figure 3. Here an increase in
velocity and a decrease in conductivity mark the water table transition. At the top of the sand
channel there is a marked low-velocity zone, probably the result of partial saturation. Zones of
partial saturation are often seen at the top of aquifers which have experienced cyclic saturation
and desaturation due to movement in the water table. Overall, this cross-well experiment was
considered quite successful in mapping the lateral extent of the aquifer.
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Figure 5. Cross-well EM time-lapse inversions at Lost Hills Oil Field. Upper panel: inverse
conductivity section for the April 1997 data set. Middle panel: inverse conductivity section for the
September 1998 data set. Bottom panel: difference image, 1998 conductivity section minus 1997
conductivity section. The black lines represent the unit tops used to guide the interpolation of the
conductivity logs to form the starting model for the April 1997 inversion.

7.2. Petroleum reservoir characterization

As part of a pilot study of water injection in a portion of the Lost Hills Oil Field, California’s
Central Valley, a time lapse cross-well EM experiment was performed by EM Instruments Inc.
Figure 4 shows a well location map for the project. A vertical magnetic dipole transmitter
operating at 1000 Hz was run in the OB 1-9 well while a vertical magnetic field receiver was
used in the OB 2-10 well.

The layout is a standard ‘five-spot’ pattern in which each producing well is surrounded
by four water injectors. As production progresses additional producers are sometimes added
to enhance production. The method of production is to hydraulically fracture ‘hydro-frac’ the
production and injection wells. The fractures produced by the hydro-frac run in a southwest
to northeast direction, as shown in figure 4. The ideal scenario is for the water to move out
from these fractures and sweep oil between the rows of injectors to the producers situated
in between. This scenario is often not achieved, with water ‘disappearing’, leaving unswept
areas of high residual oil. The purpose of the cross-well EM measurements was to determine
whether cross-well EM could image the reservoir and answer two basic questions: (1) where
is the residual oil and (2) where does the water go?

The reservoir in this area of the field is comprised of an upper, less conductive, unit and
a lower, more conductive, unit. There is a slight dip to the southeast. Deep induction logs
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run in the two observation wells prior to water injection were used to construct the starting
model for the inversion of the first data set. The conductivity from the logs at the OB 1-9
and OB 2-10 were interpolated along a dipping surface between the two wells to construct the
starting model. The starting model constructed from the interpolated well logs was used as a
reference model and perturbations about this reference were determined. Observation errors
were assigned at 5% of the maximum vertical magnetic field amplitude.

The upper panel of figure 5 shows the inverted conductivity cross section for the April
1997 data set. This model was next used as the starting and reference model for the inversion
of the September 1998 data set resulting in the model shown in the middle panel of figure 5.
The difference between the two inverse models is shown in the bottom panel of figure 5. The
difference image highlights the changes in the reservoir over the 17 months between surveys.
The RMS data misfits were 0.98 and 1.2 for the April 1997 and September 1998 inversions
respectively.

There are three major features of the difference image. First, there is a large area around
the OB 1-9 well where the conductivity has increased. Second, the conductivity has decreased
in the region between the two wells. Third, there is a small zone at the base of the upper
unit where the conductivity has increased around the OB 2-10 well. The general increase in
conductivity around the OB 1-9 well represents the movement of conductive water from the
nearby I1 injector. The decrease in conductivity in the inter-well region represents the increase
in oil saturations as oil is swept to the P1 producer. The increase in conductivity in the bottom
of the upper unit at the OB 2-10 well represents direct water communication through a fracture
in the upper unit between the I2 injector and the P2 producer.

The difference image produced by these surveys confirms the observations of water and
oil production in the surrounding wells as well as the premature water breakthrough in the
P2 producer. This demonstration survey is considered quite successful and has resulted in
continuing cross-well EM surveys for monitoring within the reservoir.

8. Discussion and conclusions

Advances in available computer power have allowed for the development of multidimensional
EM forward and inverse algorithms based on the complete physics of EM wave propagation
and scattering. Thus 3D and 2D full waveform EM inversion is now a reality. Advances
in instrumentation, including three-component magnetic field sensors, have also given us the
capability of acquiring high-quality EM data sets, which can now routinely be interpreted in
two and three dimensions using high-end desktop workstations for small data sets and high-
performance parallel computers for extremely large applications. These advances have come
rapidly. Only a few years ago researchers were concentrating on inverse solutions based on
approximate forward solutions as a way of making data interpretations tractable; now ‘exact’
full field solutions can be used, reducing the assumptions and improving the accuracy of the
interpreted models.

We anticipate that new strategies for solving 2D and 3D EM inverse problems will become
available in the coming years. An area that looks highly promising is the development of joint
inverse solutions that incorporate the multi-physics responses. For example, a joint inverse
solution that employs EM and seismic data has great appeal. It can greatly reduce solution
ambiguities that arise when only a single type of measurement is employed in the inversion
process. In a joint inversion, the poorer resolving power of the EM method can be mitigated
by incorporation of higher-resolution information provided by the seismic data. On the other
hand, seismic methods do not respond as well as EM methods to variations in subsurface
saturation. Hence, incorporation of EM data in a seismic experiment for mapping saturation
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changes would help reduce solution uncertainties there. Because both methods sense common
geological features, but in a different manner, one would expect improvements in our ability
to image subsurface geology. This is indicated in figure 3 where the sharp changes in the
conductivity and the VSP contours are highly correlated at the water table and at the top of
the sand channel. Another area of research that appears ripe for new developments is that of
solution appraisal. When we solve an inverse problem, two ingredients are required. First we
need to construct a solution and then we need to determine its uncertainty and the ultimate
resolving power of the data. In this paper we have primarily considered solution construction.
Two recent papers that shed some insight into the appraisal process are those of Alumbaugh
and Newman (1999) and Oldenburg and Li (1998). Alumbaugh and Newman utilized linear
expansion about the inverse solution to determine the model covariance and model resolution.
To treat the nonlinear nature of the problem, Oldenburg and Li propose the use of multiple
inversion runs with different starting models to characterize those portions of the solution that
are invariant and are well determined by the data. It should be clear that the appraisal process
is far more computationally burdensome than construction. It is our contention that to really
treat the problem, faster appraisal methods are needed along with more robust techniques to
deal with the nonlinear nature of the problem.
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